Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2039866

ABSTRACT

Medicinal plant microRNAs (miRNAs) are an endogenous class of small RNA central to the posttranscriptional regulation of gene expression. Biosynthetic research has shown that the mature miRNAs in medicinal plants can be produced from either the standard messenger RNA splicing mechanism or the pre-ribosomal RNA splicing process. The medicinal plant miRNA function is separated into two levels: (1) the cross-kingdom level, which is the regulation of disease-related genes in animal cells by oral intake, and (2) the intra-kingdom level, which is the participation of metabolism, development, and stress adaptation in homologous or heterologous plants. Increasing research continues to enrich the biosynthesis and function of medicinal plant miRNAs. In this review, peer-reviewed papers on medicinal plant miRNAs published on the Web of Science were discussed, covering a total of 78 species. The feasibility of the emerging role of medicinal plant miRNAs in regulating animal gene function was critically evaluated. Staged progress in intra-kingdom miRNA research has only been found in a few medicinal plants, which may be mainly inhibited by their long growth cycle, high demand for growth environment, immature genetic transformation, and difficult RNA extraction. The present review clarifies the research significance, opportunities, and challenges of medicinal plant miRNAs in drug development and agricultural production. The discussion of the latest results furthers the understanding of medicinal plant miRNAs and helps the rational design of the corresponding miRNA/target genes functional modules.


Subject(s)
MicroRNAs , Plants, Medicinal , Animals , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , RNA, Messenger , RNA, Plant/genetics , RNA, Ribosomal
2.
Comput Biol Med ; 136: 104662, 2021 09.
Article in English | MEDLINE | ID: covidwho-1324082

ABSTRACT

The coronavirus disease of 2019 (COVID-19) began as an outbreak and has taken a toll on human lives. The current pandemic requires scientific attention; hence we designed a systematic computational workflow to identify the cellular microRNAs (miRNAs) from human host possessing the capability to target and silence 3'UTR of SARS-CoV-2 genome. Based on this viewpoint, we extended our miRNA search to medicinal plants like Ocimum tenuiflorum, Zingiber officinale and Piper nigrum, which are well-known to possess antiviral properties, and are often consumed raw or as herbal decoctions. Such an approach, that makes use of miRNA of one species to interact and silence genes of another species including viruses is broadly categorized as cross-kingdom interactions. As a part of our genomics study on host-virus-plant interaction, we identified one unique 3'UTR conserved site 'GGAAGAG' amongst 5024 globally submitted SARS-CoV-2 complete genomes, which can be targeted by the human miRNA 'hsa-miR-1236-3p' and by Z. officinale miRNA 'zof-miR2673b'. Additionally, we also predicted that the members of miR477 family commonly found in these three plant genomes possess an inherent potential to silence viral genome RNA and facilitate antiviral defense against SARS-CoV-2 infection. In conclusion, this study reveals a universal site in the SARS-CoV-2 genome that may be crucial for targeted therapeutics to cure COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Plants, Medicinal , 3' Untranslated Regions/genetics , Computational Biology , Genomics , Humans , MicroRNAs/genetics , Plants, Medicinal/genetics , RNA, Plant , SARS-CoV-2
3.
Cells ; 10(2)2021 02 04.
Article in English | MEDLINE | ID: covidwho-1063383

ABSTRACT

Our knowledge of the evolution and the role of untranslated region (UTR) in SARS-CoV-2 pathogenicity is very limited. Leader sequence, originated from UTR, is found at the 5' ends of all encoded SARS-CoV-2 transcripts, highlighting its importance. Here, evolution of leader sequence was compared between human pathogenic and non-pathogenic coronaviruses. Then, profiling of microRNAs that can inactivate the key UTR regions of coronaviruses was carried out. A distinguished pattern of evolution in leader sequence of SARS-CoV-2 was found. Mining all available microRNA families against leader sequences of coronaviruses resulted in discovery of 39 microRNAs with a stable thermodynamic binding energy. Notably, SARS-CoV-2 had a lower binding stability against microRNAs. hsa-MIR-5004-3p was the only human microRNA able to target the leader sequence of SARS and to a lesser extent, also SARS-CoV-2. However, its binding stability decreased remarkably in SARS-COV-2. We found some plant microRNAs with low and stable binding energy against SARS-COV-2. Meta-analysis documented a significant (p < 0.01) decline in the expression of MIR-5004-3p after SARS-COV-2 infection in trachea, lung biopsy, and bronchial organoids as well as lung-derived Calu-3 and A549 cells. The paucity of the innate human inhibitory microRNAs to bind to leader sequence of SARS-CoV-2 can contribute to its high replication in infected human cells.


Subject(s)
5' Untranslated Regions , COVID-19/virology , MicroRNAs/genetics , SARS-CoV-2/genetics , Virus Replication , Animals , Computational Biology , Evolution, Molecular , Genome, Viral , Humans , MicroRNAs/pharmacology , Nucleic Acid Conformation , RNA, Plant/pharmacology , SARS-CoV-2/physiology
4.
Nucleic Acids Res ; 49(D1): D183-D191, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-873045

ABSTRACT

RNA molecules fold into complex structures that are important across many biological processes. Recent technological developments have enabled transcriptome-wide probing of RNA secondary structure using nucleases and chemical modifiers. These approaches have been widely applied to capture RNA secondary structure in many studies, but gathering and presenting such data from very different technologies in a comprehensive and accessible way has been challenging. Existing RNA structure probing databases usually focus on low-throughput or very specific datasets. Here, we present a comprehensive RNA structure probing database called RASP (RNA Atlas of Structure Probing) by collecting 161 deduplicated transcriptome-wide RNA secondary structure probing datasets from 38 papers. RASP covers 18 species across animals, plants, bacteria, fungi, and also viruses, and categorizes 18 experimental methods including DMS-seq, SHAPE-Seq, SHAPE-MaP, and icSHAPE, etc. Specially, RASP curates the up-to-date datasets of several RNA secondary structure probing studies for the RNA genome of SARS-CoV-2, the RNA virus that caused the on-going COVID-19 pandemic. RASP also provides a user-friendly interface to query, browse, and visualize RNA structure profiles, offering a shortcut to accessing RNA secondary structures grounded in experimental data. The database is freely available at http://rasp.zhanglab.net.


Subject(s)
Computational Biology/statistics & numerical data , Databases, Genetic/statistics & numerical data , High-Throughput Nucleotide Sequencing/statistics & numerical data , Nucleic Acid Conformation , RNA/chemistry , Transcriptome , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Computational Biology/methods , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Pandemics , RNA/genetics , RNA Probes/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Plant/chemistry , RNA, Plant/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology
5.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: covidwho-787100

ABSTRACT

Recent advances in transcriptomics have uncovered lots of novel transcripts in plants. To annotate such transcripts, dissecting their coding potential is a critical step. Computational approaches have been proven fruitful in this task; however, most current tools are designed/optimized for mammals and only a few of them have been tested on a limited number of plant species. In this work, we present NAMS webserver, which contains a novel coding potential classifier, NAMS, specifically optimized for plants. We have evaluated the performance of NAMS using a comprehensive dataset containing more than 3 million transcripts from various plant species, where NAMS demonstrates high accuracy and remarkable performance improvements over state-of-the-art software. Moreover, our webserver also furnishes functional annotations, aiming to provide users informative clues to the functions of their transcripts. Considering that most plant species are poorly characterized, our NAMS webserver could serve as a valuable resource to facilitate the transcriptomic studies. The webserver with testing dataset is freely available at http://sunlab.cpy.cuhk.edu.hk/NAMS/.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Internet , Molecular Sequence Annotation/methods , Plants/genetics , Genetic Code/genetics , Plants/classification , RNA, Messenger/genetics , RNA, Plant/genetics , Reproducibility of Results , Species Specificity , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL